ThreeOscillatorsDoc

Oscillatory system with 1:1:1 internal resonance

Contents

We extract FRC of a three DOFs model with 1:1:1 internal resonance

clear all, close all, clc

Example Setup

epsilon = 5e-3;
c1 = 5e-4;
c2 = 1e-3;
c3 = 1.5e-3;
K = 1e-3;
[mass,damp,stiff,fnl,fext]=build_model(c1,c2,c3,K);

Dynamical System Setup

order = 2;
DS = DynamicalSystem(order);
set(DS,'M',mass,'C',damp,'K',stiff,'fnl',fnl);
set(DS.Options,'Emax',5,'Nmax',10,'notation','multiindex')

Forcing

kappas = [1; -1];
coeffs = [fext fext]/2;
DS.add_forcing(coeffs, kappas, epsilon);

Linear Modal analysis

startMD = tic;
[V,D,W] = DS.linear_spectral_analysis();
timings.MD = toc(startMD);
 The first 6 nonzero eigenvalues are given as

  -0.0002 + 1.0000i
  -0.0002 - 1.0000i
  -0.0005 + 1.0000i
  -0.0005 - 1.0000i
  -0.0008 + 1.0000i
  -0.0008 - 1.0000i

6D SSM based computation

1:1:1 internal resonance

S = SSM(DS);
set(S.Options, 'reltol', 1,'notation','multiindex');
order = 3;
outdof = [1 2 3];

We are interested in the FRC over the frequency span [0.995 1.016]. We can call the routine extract_FRC to extract the FRC. All the three natural frequencies are inside the frequency span. The frequency span is divided into a single subinterval because of the 1:1:1 internal resonance. A single continuation run is involved to get the FRC for the subinterval.

set(S.Options, 'IRtol',0.02,'notation', 'multiindex','contribNonAuto',true)
set(S.FRCOptions, 'method','continuation ep')
set(S.FRCOptions, 'outdof',outdof)
set(S.FRCOptions, 'initialSolver', 'fsolve');
set(S.contOptions,'PtMX',250);

freqRange = [0.995 1.016];

call extract_FRC to calculate the FRC

FRC = S.extract_FRC('freq',freqRange,order);
The master subspace has internal resonances: [1  1  1  1  1  1]
*****************************************
Calculating FRC using SSM with master subspace: [1  2  3  4  5  6]
The master subspace contains the following eigenvalues
 
lambda1 == - 0.00025 + 1i
 
lambda2 == (-0.00025) - 1i
 
lambda3 == - 0.0005 + 1i
 
lambda4 == (-0.0005) - 1i
 
lambda5 == - 0.00075 + 1i
 
lambda6 == (-0.00075) - 1i
 
sigma_out = 0
(near) inner resonance detected for the following combination of master eigenvalues:
 
1*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 + 1*lambda5 + 0*lambda6 == lambda1
 
0*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 + 2*lambda5 + 1*lambda6 == lambda1
 
0*lambda1 + 0*lambda2 + 0*lambda3 + 1*lambda4 + 2*lambda5 + 0*lambda6 == lambda1

.
.
.

sigma_in = 3

Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 2.42E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 6.34E-02 MB

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='freqSubint1.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          2.64e-09  1.07e+01    0.1    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1         rho2         rho3          th1          th2          th3          eps
    0  00:00:01   1.0746e+01      1  EP      1.0000e+00   2.2254e+00   1.4394e+00   1.0270e+00   4.6046e+00   4.0733e+00   3.2966e+00   5.0000e-03
   10  00:00:03   1.1732e+01      2          9.9957e-01   1.8557e+00   9.2553e-01   3.2523e-01   5.0674e+00   4.6994e+00   3.9559e+00   5.0000e-03
   20  00:00:04   1.2604e+01      3          9.9826e-01   8.5259e-01   1.4704e-01   1.2288e-03   5.3697e+00   5.1397e+00   4.7363e+00   5.0000e-03
   30  00:00:06   1.2935e+01      4          9.9696e-01   5.4610e-01   3.2953e-02   8.5618e-06   5.4199e+00   5.2668e+00   5.0251e+00   5.0000e-03
   40  00:00:10   1.3118e+01      5          9.9543e-01   3.7819e-01   8.2670e-03   9.1557e-08   5.4442e+00   5.3376e+00   5.1748e+00   5.0000e-03
   44  00:00:11   1.3152e+01      6  EP      9.9500e-01   3.4717e-01   5.9321e-03   3.0968e-08   5.4486e+00   5.3507e+00   5.2018e+00   5.0000e-03

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1         rho2         rho3          th1          th2          th3          eps
    0  00:00:11   1.0746e+01      7  EP      1.0000e+00   2.2254e+00   1.4394e+00   1.0270e+00   4.6046e+00   4.0733e+00   3.2966e+00   5.0000e-03
   10  00:00:12   9.3792e+00      8          1.0004e+00   1.8553e+00   1.3351e+00   1.3646e+00   4.2110e+00   3.4218e+00   2.5410e+00   5.0000e-03
   20  00:00:12   8.3005e+00      9          1.0013e+00   1.5476e+00   7.9066e-01   1.5315e+00   4.1459e+00   2.8535e+00   1.6583e+00   5.0000e-03
   30  00:00:13   7.7094e+00     10          1.0024e+00   1.8740e+00   5.3870e-01   1.7407e+00   3.8252e+00   2.5069e+00   9.8178e-01   5.0000e-03
   35  00:00:14   7.3392e+00     11  SN      1.0025e+00   1.9151e+00   5.1776e-01   1.6956e+00   3.6010e+00   2.3728e+00   7.2064e-01   5.0000e-03
   35  00:00:14   7.3392e+00     12  FP      1.0025e+00   1.9151e+00   5.1776e-01   1.6956e+00   3.6010e+00   2.3728e+00   7.2064e-01   5.0000e-03
   40  00:00:14   6.7542e+00     13          1.0023e+00   1.8415e+00   5.3293e-01   1.4787e+00   3.2967e+00   2.2182e+00   3.9337e-01   5.0000e-03
   47  00:00:15   5.6193e+00     14  SN      1.0018e+00   1.3918e+00   6.2354e-01   7.8094e-01   2.8362e+00   1.9228e+00  -3.2860e-01   5.0000e-03
   47  00:00:15   5.6193e+00     15  FP      1.0018e+00   1.3918e+00   6.2354e-01   7.8094e-01   2.8362e+00   1.9228e+00  -3.2860e-01   5.0000e-03
   50  00:00:15   5.3793e+00     16          1.0019e+00   1.1827e+00   6.5459e-01   6.3228e-01   2.7821e+00   1.7508e+00  -6.5770e-01   5.0000e-03
   53  00:00:15   5.2836e+00     17  HB      1.0021e+00   1.0124e+00   6.8834e-01   5.6849e-01   2.7797e+00   1.5855e+00  -9.4407e-01   5.0000e-03
   60  00:00:16   5.6878e+00     18          1.0040e+00   6.2522e-01   8.9986e-01   5.5065e-01   3.0777e+00   1.1376e+00  -1.7022e+00   5.0000e-03
   70  00:00:16   6.6111e+00     19          1.0081e+00   7.0981e-01   1.2679e+00   6.0120e-01   3.6326e+00   9.3088e-01  -2.0740e+00   5.0000e-03
   80  00:00:17   7.0282e+00     20          1.0128e+00   1.0047e+00   1.5740e+00   5.8776e-01   3.7558e+00   8.0695e-01  -2.2545e+00   5.0000e-03
   88  00:00:17   7.0826e+00     21  HB      1.0150e+00   1.1574e+00   1.6754e+00   5.4840e-01   3.6429e+00   6.4197e-01  -2.4333e+00   5.0000e-03
   90  00:00:18   7.0682e+00     22          1.0154e+00   1.1960e+00   1.6839e+00   5.2559e-01   3.5720e+00   5.6103e-01  -2.5165e+00   5.0000e-03
   92  00:00:18   7.0527e+00     23  SN      1.0154e+00   1.2126e+00   1.6800e+00   5.1008e-01   3.5265e+00   5.1138e-01  -2.5668e+00   5.0000e-03
   92  00:00:18   7.0527e+00     24  FP      1.0154e+00   1.2126e+00   1.6800e+00   5.1008e-01   3.5265e+00   5.1138e-01  -2.5668e+00   5.0000e-03
  100  00:00:18   6.7311e+00     25          1.0111e+00   1.1708e+00   1.3243e+00   2.7824e-01   3.0215e+00   1.0008e-02  -3.0496e+00   5.0000e-03
  110  00:00:19   6.2183e+00     26          1.0032e+00   7.2928e-01   1.7135e-01   1.1881e-03   2.4710e+00  -4.7512e-01  -3.3815e+00   5.0000e-03
  112  00:00:19   6.2195e+00     27  FP      1.0031e+00   7.0250e-01   1.4145e-01   6.6679e-04   2.4638e+00  -4.8721e-01  -3.3931e+00   5.0000e-03
  112  00:00:19   6.2195e+00     28  SN      1.0031e+00   7.0250e-01   1.4145e-01   6.6679e-04   2.4638e+00  -4.8721e-01  -3.3931e+00   5.0000e-03
  120  00:00:20   6.3051e+00     29          1.0038e+00   4.9450e-01   2.8006e-02   4.2745e-06   2.4266e+00  -5.7608e-01  -3.5219e+00   5.0000e-03
  130  00:00:22   6.3960e+00     30          1.0049e+00   3.6535e-01   7.8504e-03   7.2636e-08   2.4079e+00  -6.3060e-01  -3.6215e+00   5.0000e-03
  134  00:00:22   6.4220e+00     31  MX      1.0054e+00   3.3244e-01   5.3293e-03   2.0827e-08   2.4032e+00  -6.4451e-01  -3.6481e+00   5.0000e-03
Total time spent on FRC computation upto O(3) = 00:01:00

On the other hand, we can use SSM-ep toolbox to obtaint the FRC with a single continuation run as well given in the whole frequency span. The SSM-ep toolbox is the minic of the ep-toolbox of COCO. It is in the middle level of the SSMTool while the extract_FRC routine is in the high level of the SSMTool. The continuation-based method implemented in the extract_FRC routine is actually built on the SSM-ep toolbox. Users may use the extract_FRC routine initially. They may explore the SSM-ep toolbox given this toolbox has more functionalities, e.g., bifurcation analysis.

We call the function SSM_isol2ep, whose arguments can be found via help

help SSM_isol2ep
--- help for SSM/SSM_isol2ep ---

  SSM_ISOL2EP This function performs continuation of equilibrium points of
  slow dynamics. Each equilibirum point corresponds to a periodic orbit in
  the regular time dynamics. The continuation here starts from the guess of
  initial solution.
 
  FRC = SSM_ISOL2EP(OBJ,OID,RESONANT_MODES,ORDER,MFREQS,PARNAME,PARRANGE,OUTDOF,VARARGIN)
 
  oid:      runid of continuation
  resonant_modes:    master subspace
  order:    expansion order of SSM
  mFreqs:   internal resonance relation vector
  parName:  amp/freq continuation parameter
  parRange: continuation domain of parameter, which should be near the
            value of natural frequency with index 1 in the mFreq if the continuation
            parameter is freq
  outdof:   output for dof in physical domain
  varargin: [{p0,z0}], ['saveICs'] where {p0,z0} are initial solution
            guesses and saveICs is a flag saving a point on trajectory as initial
            condition for numerical integration

In this example, the resonant_modes should be [1 2 3 4 5 6] due to all modes are involved in the resonance. We have and then (mfreqs). The argument parName can be amp or freq. When parName='freq'/'amp', the forced response curve with varied excitation frequency / excitation amplitude is obtained.

resonant_modes = [1 2 3 4 5 6];
mFreq  = [1 1 1];
set(S.contOptions,'PtMX',250);
startep = tic;
FRC_ep_polar = S.SSM_isol2ep('isol_polar',resonant_modes, order, mFreq, 'freq', freqRange, outdof);
timings.epPolarFRC = toc(startep);
The master subspace contains the following eigenvalues
 
lambda1 == - 0.00025 + 1i
 
lambda2 == (-0.00025) - 1i
 
lambda3 == - 0.0005 + 1i
 
lambda4 == (-0.0005) - 1i
 
lambda5 == - 0.00075 + 1i
 
lambda6 == (-0.00075) - 1i
 
sigma_out = 0
(near) inner resonance detected for the following combination of master eigenvalues:
 
1*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 + 1*lambda5 + 0*lambda6 == lambda1
 
0*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 + 2*lambda5 + 1*lambda6 == lambda1
 
0*lambda1 + 0*lambda2 + 0*lambda3 + 1*lambda4 + 2*lambda5 + 0*lambda6 == lambda1

.
.
. 

sigma_in = 3

Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 2.42E-02 MB
Manifold computation time at order 3 = 00:00:01
Estimated memory usage at order  3 = 6.34E-02 MB

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='isol_polar.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          2.64e-09  1.07e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1         rho2         rho3          th1          th2          th3          eps
    0  00:00:00   1.0746e+01      1  EP      1.0000e+00   2.2254e+00   1.4394e+00   1.0270e+00   4.6046e+00   4.0733e+00   3.2966e+00   5.0000e-03
   10  00:00:01   1.1732e+01      2          9.9957e-01   1.8557e+00   9.2553e-01   3.2523e-01   5.0674e+00   4.6994e+00   3.9559e+00   5.0000e-03
   20  00:00:02   1.2604e+01      3          9.9826e-01   8.5259e-01   1.4704e-01   1.2288e-03   5.3697e+00   5.1397e+00   4.7363e+00   5.0000e-03
   30  00:00:05   1.2935e+01      4          9.9696e-01   5.4610e-01   3.2953e-02   8.5618e-06   5.4199e+00   5.2668e+00   5.0251e+00   5.0000e-03
   40  00:00:07   1.3118e+01      5          9.9543e-01   3.7819e-01   8.2670e-03   9.1557e-08   5.4442e+00   5.3376e+00   5.1748e+00   5.0000e-03
   44  00:00:08   1.3152e+01      6  EP      9.9500e-01   3.4717e-01   5.9321e-03   3.0968e-08   5.4486e+00   5.3507e+00   5.2018e+00   5.0000e-03

 STEP      TIME        ||U||  LABEL  TYPE            om         rho1         rho2         rho3          th1          th2          th3          eps
    0  00:00:08   1.0746e+01      7  EP      1.0000e+00   2.2254e+00   1.4394e+00   1.0270e+00   4.6046e+00   4.0733e+00   3.2966e+00   5.0000e-03
   10  00:00:08   9.3792e+00      8          1.0004e+00   1.8553e+00   1.3351e+00   1.3646e+00   4.2110e+00   3.4218e+00   2.5410e+00   5.0000e-03
   20  00:00:10   8.3005e+00      9          1.0013e+00   1.5476e+00   7.9066e-01   1.5315e+00   4.1459e+00   2.8535e+00   1.6583e+00   5.0000e-03
   30  00:00:11   7.7094e+00     10          1.0024e+00   1.8740e+00   5.3870e-01   1.7407e+00   3.8252e+00   2.5069e+00   9.8178e-01   5.0000e-03
   35  00:00:13   7.3392e+00     11  SN      1.0025e+00   1.9151e+00   5.1776e-01   1.6956e+00   3.6010e+00   2.3728e+00   7.2064e-01   5.0000e-03
   35  00:00:13   7.3392e+00     12  FP      1.0025e+00   1.9151e+00   5.1776e-01   1.6956e+00   3.6010e+00   2.3728e+00   7.2064e-01   5.0000e-03
   40  00:00:13   6.7542e+00     13          1.0023e+00   1.8415e+00   5.3293e-01   1.4787e+00   3.2967e+00   2.2182e+00   3.9337e-01   5.0000e-03
   47  00:00:14   5.6193e+00     14  SN      1.0018e+00   1.3918e+00   6.2354e-01   7.8094e-01   2.8362e+00   1.9228e+00  -3.2860e-01   5.0000e-03
   47  00:00:14   5.6193e+00     15  FP      1.0018e+00   1.3918e+00   6.2354e-01   7.8094e-01   2.8362e+00   1.9228e+00  -3.2860e-01   5.0000e-03
   50  00:00:14   5.3793e+00     16          1.0019e+00   1.1827e+00   6.5459e-01   6.3228e-01   2.7821e+00   1.7508e+00  -6.5770e-01   5.0000e-03
   53  00:00:14   5.2836e+00     17  HB      1.0021e+00   1.0124e+00   6.8834e-01   5.6849e-01   2.7797e+00   1.5855e+00  -9.4407e-01   5.0000e-03
   60  00:00:14   5.6878e+00     18          1.0040e+00   6.2522e-01   8.9986e-01   5.5065e-01   3.0777e+00   1.1376e+00  -1.7022e+00   5.0000e-03
   70  00:00:15   6.6111e+00     19          1.0081e+00   7.0981e-01   1.2679e+00   6.0120e-01   3.6326e+00   9.3088e-01  -2.0740e+00   5.0000e-03
   80  00:00:16   7.0282e+00     20          1.0128e+00   1.0047e+00   1.5740e+00   5.8776e-01   3.7558e+00   8.0695e-01  -2.2545e+00   5.0000e-03
   88  00:00:16   7.0826e+00     21  HB      1.0150e+00   1.1574e+00   1.6754e+00   5.4840e-01   3.6429e+00   6.4197e-01  -2.4333e+00   5.0000e-03
   90  00:00:16   7.0682e+00     22          1.0154e+00   1.1960e+00   1.6839e+00   5.2559e-01   3.5720e+00   5.6103e-01  -2.5165e+00   5.0000e-03
   92  00:00:16   7.0527e+00     23  SN      1.0154e+00   1.2126e+00   1.6800e+00   5.1008e-01   3.5265e+00   5.1138e-01  -2.5668e+00   5.0000e-03
   92  00:00:16   7.0527e+00     24  FP      1.0154e+00   1.2126e+00   1.6800e+00   5.1008e-01   3.5265e+00   5.1138e-01  -2.5668e+00   5.0000e-03
  100  00:00:17   6.7311e+00     25          1.0111e+00   1.1708e+00   1.3243e+00   2.7824e-01   3.0215e+00   1.0008e-02  -3.0496e+00   5.0000e-03
  110  00:00:17   6.2183e+00     26          1.0032e+00   7.2928e-01   1.7135e-01   1.1881e-03   2.4710e+00  -4.7512e-01  -3.3815e+00   5.0000e-03
  112  00:00:18   6.2195e+00     27  FP      1.0031e+00   7.0250e-01   1.4145e-01   6.6679e-04   2.4638e+00  -4.8721e-01  -3.3931e+00   5.0000e-03
  112  00:00:18   6.2195e+00     28  SN      1.0031e+00   7.0250e-01   1.4145e-01   6.6679e-04   2.4638e+00  -4.8721e-01  -3.3931e+00   5.0000e-03
  120  00:00:18   6.3051e+00     29          1.0038e+00   4.9450e-01   2.8006e-02   4.2745e-06   2.4266e+00  -5.7608e-01  -3.5219e+00   5.0000e-03
  130  00:00:20   6.3960e+00     30          1.0049e+00   3.6535e-01   7.8504e-03   7.2636e-08   2.4079e+00  -6.3060e-01  -3.6215e+00   5.0000e-03
  134  00:00:21   6.4220e+00     31  MX      1.0054e+00   3.3244e-01   5.3293e-03   2.0827e-08   2.4032e+00  -6.4451e-01  -3.6481e+00   5.0000e-03

the forcing frequency 9.9500e-01 is nearly resonant with the eigenvalue -2.5000e-04 + i1.0000e+00
the forcing frequency 9.9501e-01 is nearly resonant with the eigenvalue -2.5000e-04 + i1.0000e+00
the forcing frequency 9.9515e-01 is nearly resonant with the eigenvalue -2.5000e-04 + i1.0000e+00
.
.
. 

As seen in the continuation hisotry, the continuation run terminated at a point where (denoted as MX point), which triggers the singularity of the vector field. As an alternative, we can use Cartesian coordinates to remove the MX point.

set(S.FRCOptions, 'coordinates','cartesian');
startep = tic;
FRC_ep_cart = S.SSM_isol2ep('isol_cart',resonant_modes, order, mFreq, 'freq', freqRange, outdof);
timings.epCartFRC = toc(startep);
The master subspace contains the following eigenvalues
 
lambda1 == - 0.00025 + 1i
 
lambda2 == (-0.00025) - 1i
 
lambda3 == - 0.0005 + 1i
 
lambda4 == (-0.0005) - 1i
 
lambda5 == - 0.00075 + 1i
 
lambda6 == (-0.00075) - 1i
 
sigma_out = 0

(near) inner resonance detected for the following combination of master eigenvalues:
 
1*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 + 1*lambda5 + 0*lambda6 == lambda1
 
0*lambda1 + 0*lambda2 + 0*lambda3 + 0*lambda4 + 2*lambda5 + 1*lambda6 == lambda1
 
0*lambda1 + 0*lambda2 + 0*lambda3 + 1*lambda4 + 2*lambda5 + 0*lambda6 == lambda1
.
.
.

sigma_in = 3

Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 2.42E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 6.34E-02 MB

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.


 Run='isol_cart.ep': Continue equilibria along primary branch.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.76e-08  4.26e+00    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Rez3         Imz1         Imz2         Imz3          eps
    0  00:00:00   4.2612e+00      1  EP      1.0000e+00  -2.3952e-01  -8.5858e-01  -1.0146e+00  -2.2125e+00  -1.1553e+00  -1.5853e-01   5.0000e-03
   10  00:00:00   3.8345e+00      2          9.9978e-01   3.6271e-01  -3.0857e-01  -5.3949e-01  -2.0866e+00  -1.1706e+00  -3.3148e-01   5.0000e-03
   20  00:00:00   2.9882e+00      3          9.9944e-01   7.0384e-01   6.7160e-02  -1.1843e-01  -1.5306e+00  -7.6358e-01  -1.6172e-01   5.0000e-03
   30  00:00:01   1.8567e+00      4          9.9823e-01   5.1524e-01   5.9059e-02   3.7431e-05  -6.6464e-01  -1.2809e-01  -1.0694e-03   5.0000e-03
   36  00:00:01   1.4904e+00      5  EP      9.9500e-01   2.3313e-01   3.5345e-03   1.4557e-08  -2.5725e-01  -4.7642e-03  -2.7333e-08   5.0000e-03

 STEP      TIME        ||U||  LABEL  TYPE            om         Rez1         Rez2         Rez3         Imz1         Imz2         Imz3          eps
    0  00:00:01   4.2612e+00      6  EP      1.0000e+00  -2.3952e-01  -8.5858e-01  -1.0146e+00  -2.2125e+00  -1.1553e+00  -1.5853e-01   5.0000e-03
   10  00:00:01   4.2339e+00      7          1.0002e+00  -7.5362e-01  -1.2473e+00  -1.2274e+00  -1.9141e+00  -7.2792e-01   3.7254e-01   5.0000e-03
   20  00:00:02   3.8236e+00      8          1.0005e+00  -8.9698e-01  -1.2036e+00  -9.4094e-01  -1.4419e+00  -1.3022e-01   1.0366e+00   5.0000e-03
   30  00:00:03   3.5592e+00      9          1.0012e+00  -8.2201e-01  -7.8506e-01  -1.9070e-01  -1.2991e+00   2.1546e-01   1.5064e+00   5.0000e-03
   40  00:00:04   3.8572e+00     10          1.0021e+00  -1.1983e+00  -5.0346e-01   6.3364e-01  -1.3216e+00   2.9278e-01   1.5847e+00   5.0000e-03
   50  00:00:04   3.9601e+00     11          1.0025e+00  -1.7012e+00  -3.7600e-01   1.2571e+00  -8.7962e-01   3.5660e-01   1.1486e+00   5.0000e-03
   51  00:00:05   3.9537e+00     12  FP      1.0025e+00  -1.7166e+00  -3.7213e-01   1.2740e+00  -8.4917e-01   3.6000e-01   1.1188e+00   5.0000e-03
   51  00:00:05   3.9537e+00     13  SN      1.0025e+00  -1.7166e+00  -3.7213e-01   1.2740e+00  -8.4917e-01   3.6000e-01   1.1188e+00   5.0000e-03
   60  00:00:05   3.5811e+00     14          1.0022e+00  -1.7895e+00  -3.0942e-01   1.3195e+00  -1.0986e-01   4.4862e-01   3.9369e-01   5.0000e-03
   70  00:00:06   2.8554e+00     15          1.0018e+00  -1.3644e+00  -2.2659e-01   7.8156e-01   4.0878e-01   5.7576e-01  -2.2459e-01   5.0000e-03
   71  00:00:06   2.8069e+00     16  FP      1.0018e+00  -1.3274e+00  -2.1501e-01   7.3916e-01   4.1851e-01   5.8530e-01  -2.5202e-01   5.0000e-03
   71  00:00:06   2.8069e+00     17  SN      1.0018e+00  -1.3274e+00  -2.1501e-01   7.3916e-01   4.1852e-01   5.8530e-01  -2.5202e-01   5.0000e-03
   78  00:00:07   2.3775e+00     18  HB      1.0021e+00  -9.4682e-01  -1.0152e-02   3.3342e-01   3.5840e-01   6.8827e-01  -4.6045e-01   5.0000e-03
   80  00:00:08   2.2434e+00     19          1.0027e+00  -7.7003e-01   1.5267e-01   1.3824e-01   2.3768e-01   7.4124e-01  -5.1945e-01   5.0000e-03
   90  00:00:08   2.5861e+00     20          1.0075e+00  -6.1339e-01   7.2060e-01  -2.7633e-01  -2.9691e-01   9.9355e-01  -5.3079e-01   5.0000e-03
  100  00:00:09   3.1443e+00     21          1.0131e+00  -8.4021e-01   1.1151e+00  -3.7651e-01  -5.8521e-01   1.1327e+00  -4.4736e-01   5.0000e-03
  109  00:00:10   3.3099e+00     22  HB      1.0150e+00  -1.0150e+00   1.3419e+00  -4.1650e-01  -5.5617e-01   1.0032e+00  -3.5674e-01   5.0000e-03
  110  00:00:10   3.3286e+00     23          1.0152e+00  -1.0540e+00   1.3883e+00  -4.2254e-01  -5.2912e-01   9.5003e-01  -3.3136e-01   5.0000e-03
  114  00:00:11   3.3419e+00     24  SN      1.0154e+00  -1.1239e+00   1.4651e+00  -4.2812e-01  -4.5529e-01   8.2217e-01  -2.7730e-01   5.0000e-03
  114  00:00:11   3.3419e+00     25  FP      1.0154e+00  -1.1239e+00   1.4651e+00  -4.2812e-01  -4.5529e-01   8.2217e-01  -2.7730e-01   5.0000e-03
  120  00:00:11   3.2306e+00     26          1.0143e+00  -1.2209e+00   1.5216e+00  -3.9259e-01  -1.8470e-01   4.2070e-01  -1.3714e-01   5.0000e-03
  130  00:00:12   2.7344e+00     27          1.0095e+00  -1.0966e+00   1.1812e+00  -2.1764e-01   2.5256e-01  -1.0311e-01  -1.3893e-03   5.0000e-03
  140  00:00:12   2.0377e+00     28          1.0042e+00  -7.5276e-01   4.7743e-01  -2.7043e-02   4.8620e-01  -1.8925e-01   5.2803e-03   5.0000e-03
  146  00:00:13   1.7435e+00     29  FP      1.0031e+00  -5.4722e-01   1.2499e-01  -6.4590e-04   4.4052e-01  -6.6222e-02   1.6599e-04   5.0000e-03
  146  00:00:13   1.7434e+00     30  SN      1.0031e+00  -5.4722e-01   1.2499e-01  -6.4580e-04   4.4051e-01  -6.6219e-02   1.6597e-04   5.0000e-03
  150  00:00:13   1.6502e+00     31          1.0033e+00  -4.5328e-01   5.3733e-02  -5.1083e-05   3.8151e-01  -3.1822e-02   1.6520e-05   5.0000e-03
  159  00:00:13   1.4453e+00     32  EP      1.0160e+00  -7.9372e-02   4.6870e-05  -9.1827e-15   7.6929e-02  -4.2669e-05   7.6046e-15   5.0000e-03

the forcing frequency 9.9500e-01 is nearly resonant with the eigenvalue -2.5000e-04 + i1.0000e+00
the forcing frequency 9.9555e-01 is nearly resonant with the eigenvalue -2.5000e-04 + i1.0000e+00
the forcing frequency 9.9645e-01 is nearly resonant with the eigenvalue -2.5000e-04 + i1.0000e+00
.
.
.

Validation using COCO

To conclude this example, we use the po-toolbox (collocation method) of COCO to validate the results obtained from the SSM analysis. As we can see, the results of the two methods match well. In addition, the runtime of collocation method is nearly three times of that of the SSM analysis.

nCycles = 100;
coco = cocoWrapper(DS, nCycles, outdof);
set(coco.Options, 'PtMX', 500);
set(coco.Options, 'NAdapt', 1, 'h_max', 50);

startcoco = tic;
bd2 = coco.extract_FRC(freqRange);
timings.cocoFRC = toc(startcoco)
 Run='FRC': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.00e-02  1.06e+01    0.0    0.0    0.0
   1   1  1.00e+00  5.51e-01  3.11e-04  1.06e+01    0.0    0.0    0.0
   2   1  1.00e+00  3.28e-01  5.04e-06  1.06e+01    0.0    0.1    0.0
   3   1  1.00e+00  2.39e-03  8.14e-10  1.06e+01    0.0    0.1    0.0
   4   1  1.00e+00  7.35e-07  2.21e-15  1.06e+01    0.0    0.1    0.0

 STEP      TIME        ||U||  LABEL  TYPE         omega    po.period          eps         amp1         amp2         amp3
    0  00:00:00   1.0562e+01      1  EP      9.9697e-01   6.3023e+00   5.0000e-03   7.7455e-01   4.7293e-02   1.2789e-05
    5  00:00:02   9.8080e+00      2  EP      9.9500e-01   6.3148e+00   5.0000e-03   4.9155e-01   8.4633e-03   4.5087e-08

 STEP      TIME        ||U||  LABEL  TYPE         omega    po.period          eps         amp1         amp2         amp3
    0  00:00:02   1.0562e+01      3  EP      9.9697e-01   6.3023e+00   5.0000e-03   7.7455e-01   4.7293e-02   1.2789e-05
   10  00:00:04   1.7768e+01      4          9.9893e-01   6.2899e+00   5.0000e-03   1.6913e+00   5.1904e-01   3.4088e-02
   20  00:00:07   3.0203e+01      5          9.9960e-01   6.2857e+00   5.0000e-03   2.6730e+00   1.3558e+00   5.0318e-01
   30  00:00:11   3.7130e+01      6          9.9987e-01   6.2840e+00   5.0000e-03   3.1038e+00   1.8723e+00   1.1275e+00
   40  00:00:15   3.9609e+01      7          1.0001e+00   6.2827e+00   5.0000e-03   3.0893e+00   2.0777e+00   1.6289e+00
   50  00:00:21   3.7485e+01      8          1.0003e+00   6.2811e+00   5.0000e-03   2.7028e+00   1.9393e+00   1.9053e+00
   60  00:00:25   3.2974e+01      9          1.0008e+00   6.2784e+00   5.0000e-03   2.2082e+00   1.4730e+00   2.0285e+00
   70  00:00:29   3.3298e+01     10          1.0016e+00   6.2731e+00   5.0000e-03   2.3053e+00   9.7043e-01   2.2682e+00
   80  00:00:32   3.6158e+01     11          1.0024e+00   6.2683e+00   5.0000e-03   2.6430e+00   7.6530e-01   2.4544e+00
   90  00:00:34   3.5127e+01     12          1.0025e+00   6.2678e+00   5.0000e-03   2.6703e+00   7.3846e-01   2.2577e+00
  100  00:00:37   2.9457e+01     13          1.0020e+00   6.2707e+00   5.0000e-03   2.3453e+00   8.1607e-01   1.5991e+00
  110  00:00:42   2.2086e+01     14          1.0019e+00   6.2712e+00   5.0000e-03   1.6877e+00   9.2365e-01   9.0151e-01
  120  00:00:45   1.9050e+01     15          1.0043e+00   6.2561e+00   5.0000e-03   8.5905e-01   1.3293e+00   7.8705e-01
  130  00:00:49   2.6164e+01     16          1.0110e+00   6.2146e+00   5.0000e-03   1.2724e+00   2.0835e+00   8.3858e-01
  140  00:00:53   2.8886e+01     17          1.0138e+00   6.1974e+00   5.0000e-03   1.5401e+00   2.2993e+00   7.9331e-01
  149  00:00:57   2.9873e+01     18  FP      1.0150e+00   6.1904e+00   5.0000e-03   1.7027e+00   2.3503e+00   7.0856e-01
  150  00:00:57   2.9819e+01     19          1.0149e+00   6.1907e+00   5.0000e-03   1.7193e+00   2.3365e+00   6.8695e-01
  160  00:01:01   2.7001e+01     20          1.0122e+00   6.2076e+00   5.0000e-03   1.6954e+00   2.0129e+00   4.6399e-01
  170  00:01:04   2.0709e+01     21          1.0069e+00   6.2402e+00   5.0000e-03   1.4611e+00   1.2981e+00   1.7100e-01
  180  00:01:09   1.3658e+01     22          1.0032e+00   6.2634e+00   5.0000e-03   1.0500e+00   2.6670e-01   2.2387e-03
  182  00:01:10   1.2963e+01     23  FP      1.0031e+00   6.2636e+00   5.0000e-03   9.9340e-01   2.0003e-01   9.4307e-04
  190  00:01:14   1.0315e+01     24          1.0044e+00   6.2558e+00   5.0000e-03   5.8781e-01   1.9034e-02   5.8181e-07
  194  00:01:16   8.9454e+00     25  EP      1.0160e+00   6.1842e+00   5.0000e-03   1.5506e-01   8.6834e-05   1.5227e-14

Computation time:

 Modal Analysis    MD        : 0.2106
 SSM computation   epPolarFRC: 56.2846
 SSM computation   epCartFRC : 42.7095
 Full system       cocoFRC   : 83.4836